PREVIOUSLY, ON HARD SCI-FI...
We want a planet that:
Is somewhat habitable, but only if lighting conditions are just right, that is - it has an overilluminated side and a dark side. In which case, life would need to move or cover itself when the surface passes through the overilluminated side, and do its thing when it is dark until day comes again. Like Crematoria from Chronicles of Riddick.
EXPLORING WAYS TO MAKE CREMATORIA REAL:
From the previous post...
- Trojan planets around single stars
- Trojan planets around binaries
Now exploring...
- S-type planets in close binaries
- Dying binaries
- Luminous black holes
LIFE BETWEEN TWO SUNS
Since we've already discussed how binary systems work in the previous post, let's jump straight into a sketch of my plan for this setting:
SUB-GIANT STATS:Current Age: 4.48 Gyr, 400 million years until the Helium Flash.Current temperature: 4000 K, it will continue to drop to 3000 K until the Helium Flash.Current luminosity: 5 Lsol, it will continue to steadly rise up to 25 Lsol, before taking off to 2500 Lsol for the Flash in a short period of 100 million years.Current radius: 2 Rsol, it will steadly rise to 10 Rsol, until inflating to 200 Rsol (1.9 AU) when the Flash happens.Mean HZ for L ~ 5.0 and L ~ 25.0: 2.2 AU and 5.0 AU
DO NOT GO GENTLE INTO THAT GOOD NIGHT
Ah yes, luminous black holes and their blanets (yes with a B, that's a thing). For the ones not familiar with the concept, it's the kind of scenario as presented in the movie Interstellar (2014), but for the ones not familiar with the inner workings of such systems, I must warn such systems in nature would be so rare and ephemerous that one might as well regard them as legendary oasis, from what I could find and understand.
WHAT KIND OF BLACK HOLES ARE SUITABLE?
Black holes are a very interesting class of objects for their extreme variety of sizes and surrounding structures. The smallest black holes are created by stars above 23 solar masses, when their core collapses at the end of their lifes, compressing a good chunk of its matter into an infinetly dense point, at least some 2.9 to 3.0 solar masses, the infalling material and subsequent radiation burst ends up bouncing back up and eventually spewing all of the star's upper layers away into space, hence why the resulting black hole is rather small compared to the star's mass. Such small black holes are called Stellar-mass black holes, for they have the mass of typical high-mass stars, and typically, those black holes are the most dangerous for civilizations, for they are very small to the size of a few dozen kilometers, zipping through space at stellar speeds, gravitationally interfering with other systems as they fly by, and worst of all, they are often very dark - because the are rather small, it is very easy for matter to orbit and catapult around it without getting even a tiny bit close enough to be shredded or absorbed into it, thus they rarely emit or posess detectable signatures but the light-bending their gravity produces.
Stellar black holes are also much more aggressive than heavier ones for their small size, with a virtual density much higher than massive black holes, that is, the density you would expect if it was a solid object the size of its event horizon - a person standing 100 event horizon radii from a 5 Msol black hole would experience a gravitational gradient between their head and feet of ~750m/s, leading to instant material failure of the astronaut and resulting spaghettification. Whereas this same configuration with a 1000 solar mass black hole causes a difference of only 0.02m/s, far more tolerable.
Massive black holes are gentle giants.
Larger stars produce large black holes nearly twice the mass of these, but since stars rarely exceed masses above some 50~100 solar masses, stellar black holes cannot get any bigger than some 10 solar masses. From this point onward things get strange, black holes can only get bigger by absorbing lots of matter and other black holes, which means that the larger black holes are often much ancient than most stars, planets, or even the galaxy it currently inhabits.
When we look at massive black holes and supermassive blackholes, those which range from thousands to millions of times the mass of the Sun, we often find those which are surrounded by large disks of infalling matter, accretion disks. As matter accelerates towards the black hole, it rubs against other infalling molecules, heating up to thousands of degrees, generating all sorts of radiation, including light - those are the Luminous black holes. Non-luminous black holes include the ones such as Sagittarius A* at the center of the Milky Way, with 4 million solar masses, it has barely any accretion disk, existing in the dark, puppetteering nearby stars around a seemingly empty region of space. The feeding rate of a black hole, or accretion rate, is limited by its Eddington accretion limit, which is how much mass can fall into the black hole, before the resulting radiation pressure of the accretion disk counteracts the gravitational force of the infalling matter, the brightest luminous black holes such as quasars, blazars, and young radio galaxies find themselves near this limit or at super-Eddington limits, when the black hole also absorbs the extra radiation it would emit despite greater accretion rate. For obvious reasons, blanets and stars cannot reside near such monsters, because they would quickly be disintegrated into the accretion disk.
However, one detail we have to pay attention to while looking to settle black holes with habitable conditions, is that for most of their life, black holes will exist in their dark form, while luminous black holes are rather ephemerous. A single black hole might go through several luminous phases along its life, feeding on unlucky stars for a few million years, then waiting in the dark for the next prey, hence why radio galaxies are always young, as their central black holes did not have enough time to clear their surroundings, so not yet in their dark phase.
The amount of radiation released from a luminous black hole is directly proportional to the infall of matter, sometimes a black hole will traverse a region of space with little more gas than usual and shine very dimmly with a ghostly echo, or sometimes a whole rogue planet falls in, quickly spaghettified into a bright accretion disk which, like the rings of Saturn, will last a few million years.
Because we want blanets, moons, maybe even other stars around our luminous black hole, the gas around it which is the precursos to all of these bodies will be likely of solar-composition, with some sprikle of metals and not only hydrogen gas like the interstellar medium. The black hole would have to be near the end of its feeding / luminous stage, as we still want an accretion disk as energy source, but not so large of an accretion disk it just disintegrates any rocks with dense x-rays. So if the Eddington limit says the max accretion rate is a few billionths of a solar mass per year, then we will lean towards trillionths of a solar mass per year.
Because the surface area for an accretion disk around such black holes is immense, many times that of whole stars, the surface temperature of the disk should be star-like, between some 6000 to 2500 K, this works out to quite a headache of math when you're not familiar with the principles or equations behind it...
THE GENTLE GIANT
For an Interstellar-like scenario, we'll use a supermassive black hole about 100 million solar masses, spinning at 99.995% the speed of light, an ancient monster which hasn't fed upon anything for many millions of years, just now licking the breadcrumbs of its plate, that is, with a very thin ghostly accretion disk.
We're talking a 1.0 AU radii event horizon, with a disk that extends from 1.3 to 2.5 AU.
Our Eddington luminosity is around 4~6 trillion solar luminosities (depending on the gas makeup), with an accretion rate of 2 solar masses a year. So if we want the disk's Earth-like insolation zone to be at around 3 AU from the monster, we need an effective luminosity of 9 solar luminosities. So now we divide 9 by 4 trillion, we then get 2.25 trillionths of 2 solar masses, or 0.00012 Moon-masses a year. With a temperature between 288 thousand K near the ISCO down to 83 thousand K near the edge.
Even though the temperature is not enough for hard X-rays to be emmited through the ionization of metals within the disk, most of its emissions are still in the far UV spectrum. This can be avoided by increasing the opacity of the gas, making it partially ionized in a wider disk or toroidal cloud around the black hole. This makes the inner rim of the disk extremely hot while keeping the outer parts of the disk less hot, which means we need to lower the metal content of our gas cloud, or else the breaking radiation of relativistic electrons will increase the x-ray output of our accretion disk.
As for planetary formation around such objects, it would boil down to general rules of planetary formation, except the progenitor gas cloud would be the spewed guts of one or more stars devoured by the black hole, which for our purposes would have to be the black hole's last meal in a long time, or else the extreme x-rays would just photo-evaporate our blanets.
Those conditions will be very rare or even impossible to accomplish in real life, like, even a small rogue asteroid coming from interstellar space and falling in would increase the disk's luminosity by orders of magnitude - frying whatever life existed in the blanet surface. In the whole universe with its countless blackholes there might exist very few of those legendary oasis where conditions are just right, where life is possible hanging from a silk thread.
Because photon-matter interactions are rather too complex to bother going through, I'd admit handwaving most of them away would be the best course of action - for the sake of story telling, the habitable zone distances and time dilation regarding proximity to the black hole would have way more weight to it.
But realistically, given the many unknowns regarding radiation tolerances, a habitable blanet would look like the following:
An icy/oceanic superearth far far away from the black hole, some 10 Earth-masses and between 2.0 and 2.5 Earth-radii, the illumination is pretty dim compared to Earth's, but the incidence of x-rays and electron wind against the thick hydrogen/helium rich atmosphere reacts to produce scattered radiation, which warms it up to a tolerable temperature between 200 and 400 K. The atmosphere however would be rather anoxic, as the rays cannot penetrate very deep to react with the water or ammonia which pools on the surface as oceans, and any bacteria that develops here would be anaerobic, feeding on high energy or infrared light rays and minerals dissolved in the oceans, in a way, similar to Miller's planet - except much dimmer, much redder, and warmer.
For flavor we could add our habitable planet as a moon of a gas giant, or the more unlikely case - as the tidally locked planet of a red dwarf, working pretty much the same way as the first example from the start of the post, which seems to be the only viable way to obtain the desirable Crematoria-like effect
- M. O. Valent, 13/02/2023